U.S. Department of Energy

Lawrence
Livermore
National
Laboratory

="

Preprint
UCRL-JC-138953

On The Design And
Implementation Of A
Parallel, Object-Oriented,
Image Processing Toolkit

C. Kamath, C. H. Baldwin, I. K. Fodor, N. A. Tang

This article was submitted to

Proceedings of the Parallel and Distributed Methods for Image
Processing IV, at The International Society for Optical Engineering
Annual Meeting

San Diego, CA

July 30, 2000

June 22, 2000

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401
http:/ /apollo.osti.gov /bridge/

Available to the public from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.,
Springfield, VA 22161
http:/ /www.ntis.gov/

OR
Lawrence Livermore National Laboratory

Technical Information Department’s Digital Library
http:/ /www .lInl.gov/tid/Library.html

On the design and implementation of a parallel, object-oriented,
image processing toolkit

Chandrika Kamath, Chuck H. Baldwin, Imola K. Fodor, and Nu A. Tang

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
P.O. Box 808, L-561, Livermore, CA 94551

ABSTRACT

Advances in technology have enabled us to collect data from observations, experiments, and simulations at an ever
increasing pace. As these data sets approach the terabyte and petabyte range, scientists are increasingly using semi-
automated techniques from data mining and pattern recognition to find useful information in the data. In order for
data mining to be successful, the raw data must first be processed into a form suitable for the detection of patterns.
When the data is in the form of images, this can involve a substantial amount of processing on very large data sets.

To help make this task more efficient, we are designing and implementing an object-oriented image processing
toolkit that specifically targets massively-parallel, distributed-memory architectures. We first show that it is possible
to use object-oriented technology to effectively address the diverse needs of image applications. Next, we describe
how we abstract out the similarities in image processing algorithms to enable re-use in our software. We will also
discuss the difficulties encountered in parallelizing image algorithms on massively parallel machines as well as the
bottlenecks to high performance. We will demonstrate our work using images from an astronomical data set, and
illustrate how techniques such as filters and denoising through the thresholding of wavelet coeflicients can be applied
when a large image is distributed across several processors.

Keywords: distributed algorithms, image processing, parallel performance, wavelets, object-oriented software

1. INTRODUCTION

Image processing plays an important role in the analysis of images using data mining and pattern recognition
techniques. Image data is usually available in its raw form as pixel values. However, the object or pattern of interest
is often at a higher level such as a galaxy, a road, or a face. As a result, higher level features that are representative
of the pattern must first be extracted from the image, prior to pattern recognition. This task can be very compute
intensive when the images are large, either in size, or in number, or both. In such cases, parallel processing can play
an important role in reducing the turnaround time.

In this paper, we show how we can use object-oriented techniques, in conjunction with parallel processing, to
design and implement an efficient toolkit for image processing tasks. In Section 2, we first describe the process of
data mining for extracting useful information from data. We identify several image processing tasks that can help
us in feature extraction. In Section 3, we illustrate how object-oriented techniques can be used to abstract out
commonalities in different image processing tasks. In Section 4, we discuss the approach we have taken to implement
some of these tasks in parallel. We describe our on-going efforts in the Sapphire project! to re-use our code, both in
the computation and communication parts of the software. Section 5 briefly describes the task of denoising image
data by thresholding wavelet coefficients. In Section 6, we provide some preliminary results of our work in denoising
an astronomical data set. We conclude in Section 7 with a summary.

Further author information: (Send correspondence to LK.F.)
C.K.: E-mail: kamath2@Illnl.gov
C.H.B.: E-mail: baldwin5@lInl.gov
LK.F.: fodor1@llnl.gov
N.A.T.: tangl0@llnl.gov

2. ROLE OF IMAGE PROCESSING IN DATA MINING

Data mining is a process concerned with uncovering patterns, associations, anomalies, and statistically significant
structures in data.2* It is an iterative and interactive process involving data preparation, search for patterns,
knowledge evaluation, and refinement of the process based on input from domain experts. In the data preparation
stage, we extract features from the raw data that are representative of the data and relevant to the problem being
solved. This step can consist of several stages such as the use of sampling or multi-resolution to reduce the size of
the data, denoising of the data, feature extraction, and dimension reduction to reduce the number of features (or
dimension) of the problem. This critical first step can frequently take up to 90% of the total time for data mining in
moderate-sized data sets.

The application of data mining to image data typically involves the use of image processing techniques in the
data preparation step. The compute intensive nature of these tasks, especially when the data set is very large, makes
these tasks ideal for parallel processing. If the data set consists of a large number of small to moderate size iniages,
an obvious use of parallel processors would be to assign one or more images to each processor. However, if each
image is itself very large, we may want to use parallel processing within an image. To do this efficiently can be very
challenging.

Image processing techniques that are commonly used in mining image data include image registration, enhance-
ment, denoising, segmentation, edge detection, feature extraction and multi-resolution analysis.>~" In this paper, we
will illustrate our approach to parallel implementation using wavelets and wavelet denoising. These are appropriate
operations to consider as they are composed of other operations that occur in several image processing tasks. For
example, we can consider wavelets and multi-resolution analysis in terms of filters banks composed of high- and low-
pass filters. Efficient implementation of filters in the context of wavelets will therefore help several other operations
such as edge detection and smoothing. In addition, certain ideas developed in the context of filters, can also be
applied in other areas such as morphological image processing.

We next briefly describe how object-oriented techniques can help us to abstract out the commonalities in image
processing operations. Through the use of object-oriented design and programming, we can support several different
input data formats in a user-friendly interface. In addition, for the parallel implementation of our algorithms, we can
identify and isolate the parallel processing tasks that are common across several operations. The resulting software
re-use can enable us to easily enhance the functionality of our software.

3. BENEFITS OF OBJECT-ORIENTED DESIGN AND PROGRAMMING

In the last decade, there has been an increasing interest in using object-oriented paradigms for the development
of software in scientific applications.® This approach is attractive as it supports well-defined mechanisms for a
modular design, re-use of code, data abstractions, and the creation of flexible software that can easily be enhanced
to support new applications as well as solution techniques. While object-oriented applications may initially be
more abstract, difficult to understand and implement, and possibly slower, they do provide the means of addressing
complex problems through step-wise software development. We briefly illustrate this through a simple example.

The data that is input to an image processing application can vary in the format used for storing the data. Often,
several different formats are supported even within a single application domain such as astrophysics. Sometimes,
even a single data format can support multiple options. For example, the FITS format used in astronomy® can store
one-, two-, or three-dimensional, real or integer data. Given the numerous formats currently in use in the image
processing community, it is impractical and cumbersome to provide support for all of them. A simple solution to this
problem is to first convert the input format into a standard format and then operate only on the standard format.

Figure 1 describes the class hierarchy we use for implementing this solution. All the domain specific data formats,
such as FITSData and HDFData are derived from a base class, DomainData. The base class provides the interface
for common operations such as reading and writing an input data file. Each of the derived classes implements the
operation based on the specifics of the data format. As a result, much of the detail of a data format is hidden from
the user, providing a friendlier interface. The RegData class is our internal standard data format for one-, two-, and
three-dimensional data. It is templated on the type of data — floats, doubles, or integers. The template mechanism
allows us to easily support operations for the case where the identical code is executed on different data types. It
also allows us to easily add data types as the need for them arises, without having to create a new version of the
code for the new data type.

DomainData RegData

FITSData " HDFData RegData1D<T> | "~ | RegData2D<T>

Figure 1. The class hierarchy that enables us to support different data formats

There are other areas where we can benefit by abstracting out the commonalities in image processing operations.
For example, many techniques in image processing can be expressed as operations among local collections of pixels
(or geometric regions). Linear filters® and discrete wavelet operators,’® where a linear transformation is applied to
neighboring pixels in the specified region, are examples of such techniques. Other examples where the transformation
depends on the local data are non-linear filters and morphological operators. We distinguish between transformations
that have associated values and those which do not. The former are defined by the Stencil class and the latter by
the Neighborhood class. The geometric regions associated with both are formulated by the user as index offsets from
an implied origin. An object in each class is configured with these offsets. In the case of a Stencil class, there are
also associated values that are templated on the data type. The Stencil operator can be used in filtering, wavelet
operators, or any other operation where the values can be a-priori associated with specific pixels in a region. The
Neighborhood is used in non-linear filtering, morphological operators, and other contexts where the user is unable
to associate values with specific pixels in a region — either because values do not exist or they vary in space or time,
and therefore cannot be hard coded into the object. Figure 2 is an example of a simple 3 by 3 Neighborhood.

»

- +
ONONONONS
o0 (O @)

y| Ol @ O
OO0 ® 0|0
ONONORONG

+

Figure 2. Example of a 3 by 3 Neighborhood

In this example, the implied origin is the black circle o. It, along with the gray circles, represents the specific
collection of pixels that is the geometric region of the Neighborhood. Note that the origin is part of the Neighbor-
hood. The outline (or the bounding box) represents the maximum extents of the collection of pixels that form the
Neighborhood. The region is “encoded” in the example Neighborhood object by the following collection of (z,y)
offsets:

{(Ov _1) ’ (—L 0)) (O’ 0) s (la 0) ’ (O’ 1)} .

Our object-oriented software is designed so that both the Neighborhood and the Stencil classes are inherited
from a base class. The interface of this class provides generic operations on either of the derived classes — several of
these operations are used in inter-process communication and boundary treatments. For example, one of the virtual
member functions in the abstract base class is the getBoundingBoxz function. This function returns an abstract
object, containing the extents of the bounding boz described above. It gives a gross specification of the geometric
region which forms the stencil/neighborhood. More details on how this can be used in inter-process communications
are given in the next section.

4. PARALLEL IMPLEMENTATION

Our image processing toolkit is targeted toward Massively Parallel Processors (MPPs) or clusters of Symmetric
Multi-Processors (SMPs).!! On these architectures, communication between processors is done through the use of
the Message Passing Interface (MPI) and the OpenMP libraries.!?1® Several important issues have to be considered
in order to design and implement an efficient parallel image processing toolkit. Many of these can be characterized
as cost related.

Minimizing the cost of communication is critical to parallel performance and scalability of any software. In the
MPI programming paradigm, data is communicated between processors as conceptual “sends” and “receives.” The
implementation of this send/receive mechanism is architecture dependent; but, as a rule, it is more expensive to
carry out communication of arithmetic data than computation with the same data.!*'®> Another important issue is
to minimize the time spent in first developing, and later, debugging, parallel algorithms. In light of these issues, our
design approach seeks to:

e perform the communication efficiently in order to minimize its effect

o reduce the development and maintenance time through the re-use of common communication-related elements

To achieve these goals and incorporate flexibility into our software, it is desirable that the image processing opera-
tions be independent of the data distribution and communication paradigms. In other words, we want our algorithms
to work regardless of how the user has configured the processors. To accomplish this, we need to incorporate the
following into our design methodology!®:

e develop data partitions and processor configurations

e determine the communication requirements based on the partition

efficiently agglomerate the work

e map the work to the processors

perform the actual work

For the stencil- and neighborhood-based operations mentioned in the previous section, many of the ideas for
effectively implementing the above methodology have been studied extensively.!”® In particular, we can benefit
from the work done in the fields of parallel numerical techniques for Linear Algebra and the solution of Partial
Differential Equations. We exploit the fact that in general, the stencil/neighborhood operations have the following
characteristics:

e Local — each task communicates with a small set of other tasks
o Structured — a task and its neighbors form a regular structure
e Static — the identity of communication partners does not change over time

e Synchronous — producers and consumers execute in a coordinated fashion, with producer/consumer pairs co-
operating in data transfer operations

An effective way to address such problems is to first partition the image into contiguous rectilinear collections of
pixels called bozes, and then to configure the processors to the resulting rectilinear partitioning.?22 A boz specifies
the lower and upper indices that denote the corners of a sub-image. The idea stems from an abstract “index space”
associated with the original image. Note that the box object itself is small — it contains no actual data but only the
indices representing the lower and upper corners which the sub-image occupies in the index space. It is included with
the actual pixel data in a higher level object that represents the sub-image. As an example, consider a 2 dimensional
M by N image. An abstract box associated with a sub-image {(%0,jo), (i1, 71)} consists of indices (¢, j):

(£,§):0<ip<i<ii<M , 0<j<j<hi<AN.

0123456738 91011
0+looooooloooooo
1+|o o o olo o 00
2410 o @oooomoo
3ilooooooloooooo
4+lo oo oo oloooooo0
5+|o o O 0|0 O 0 0
6——00%0000132300
7+]/0 0 0 0 0O 0[O0 0O OO0 O O

Figure 3. An 8 by 12 image decomposed on 2 x 2 processors

Figure 3 depicts an 8 by 12 “image” decomposed onto a 2 x 2 processor configuration with processors Pg through
P3. If the image indices are from the region of index space {(0,0),(7,11)}, then the four boxes associated with each
sub-image and processor assignment are:

e Po: {(0,0),(3,5)},
e P1: {(0,6),(3,11)},
e P2: {(4,0),(7,5)},
o P35 : {(4,6),(7,11)}.

To accommodate this functionality, we have included classes for “boxes” in our toolkit. These classes include
functions that perform set or algebraic operations on boxes, often called boz calculus.?®?2 Some of these operations

include:

e grow/shrink - increase (or decrease) the size of a box in various ways
e refine/coarsen - refine (or coarsen) the index space associated with the box

e intersect/union - perform set manipulations with the index spaces

This box concept, along with the conventions adopted in MPI, enables us to address, directly or indirectly, the
design methodology concepts mentioned earlier. An image processing application first uses MPI to create logically
rectangular processor configurations and then maps the data onto the processor configuration in the form of boxes. To
address performance concerns, our toolkit includes data distribution algorithms that partition the data and configure
the processors so that the surface to volume ratio of the boxes is minimized. For operations based on regular grids,
such as images, this minimization of the surface to volume ratio tends to minimize the cost of communication and
maximize the performance.??

The stencil/neighborhood concept introduced earlier can be used to “package” general communication proce-
dures within the toolkit. Since a stencil/neighborhood object contains information on the indices needed for local
computations, the “gross” data requirements can be given for any such calculation in the form of a bounding box
of the stencil/neighborhood operator. For instance, the 3 by 3 Neighborhood in Figure 2, has its bounding box
described using the abstract box {(—1,-1),(1,1)}. The application of many linear and non-linear filters can use the
stencil/neighborhood concept in order to create re-usable code. For example, if we ignore boundary treatment, a
simple linear operation which averages the values of a; ; in a 3 x 3 area around a specific index (4, j) can be written
as:

bij = Z Z at+m71+n (1)

n=-—1 m——l

The same result can be achieved by creating a Stencil as the following nine index/value pairs:
{(=1,-1);1/9y , {(0,-1)51/9} , {(1,-1);1/9},
{(-1,0);1/9% , {(0,0);1/9y , {(1,0);1/9},
{11179y , {(O,1;1/9y , {(1,1);1/9},

and using the following algorithm to “apply” the stencil to an image:

Algorithm: Apply Stencil
For each pixel location in the input image A (referred to as the input pixel)

— Initialize a temporary variable to zero
— For each element of the Stencil object

*x Get an offset/value pair from the Stencil
*x Multiply the stencil value with the image pixel obtained by adding the offset to the input pixel location
and add the result to the temporary

— Assign the temporary to the output image B (at the same location as the input pixel)

With these abstractions, it is possible to create communication objects that accomplish all the communication
associated with the application of a filter to an image in a parallel environment. One function of this object
would be to take a processor configuration, along with the distributed image, and a given filter (with an associated
stencil/neighborhood), and create a list of all sends and receives that must take place to permit local application of
the filter. This would allow all interprocessor boundary exchanges associated with the application of a filter to be
portable across processor configurations and data distributions. We next describe how this can be done in practice.

Each processor that owns a sub-image (that is part of a larger distributed image) can determine the regions of
its sub-image that must be sent to another processor as follows:

Algorithm: Identify Send Regions
For all other processors which contain boxes of the distributed image
— Grow each processor’s local box by the bounding box for the stencil/neighborhood to get a destination

box with local plus “ghost” indices

— Intersect this destination box with the current processor’s local box to obtain an intersection box with
indices which need communicating

— Put the non-empty intersection boxes and corresponding processor ID on a list for communication

In the algorithm, the ghost indices refer to the the additional indices that result from the growth of each processors
bounding box. In a similar way, each processor can determine the regions of other sub-images that it must receive
as follows:

Algorithm: Identify Receive Regions

— Grow the current processor’s box by the bounding box for the stencil/neighborhood to get a source box
with local plus “ghost” indices

— For all other processors which contain boxes of the distributed image
+ Intersect the source box with the given processor’s local box to obtain an intersection box with indices

which need communicating
* Put the non-empty intersection boxes and corresponding processor IDs on a list for communication

As an example, given the previously mentioned 3 x 3 neighborhood and a local 4 x 5 box, the send communication
boxes are depicted as the 8 detached boxes in Figure 4, while the receive communication boxes are depicted as the
8 detached boxes in Figure 5.

® 9006

o008

-
'

Figure 5. Receive boxes for a 4 by 5 subimage

This stencil and boz idea can be used to implement the wavelet classes used in the denoising of image data,
Section 5. Since a wavelet can be considered as a filter bank of high and low pass filters, a new wavelet category can
be added by simply creating the filters as stencils and defining the wavelet coefficients appropriately.

In order to drive the image processing application, we let the user specify the distribution of the files to the
processors as well as the processor topology. For example, the following input file

Name of File Processors Used Proc-Grid-Dimension Proc-Topology
filel 0123 1D Linear
file2 4567 2D Linear-X, Periodic-Y

indicates that the two input files, filel and file2 are to be assigned to the group of processors {0, 1, 2,3} and {4,5,6,7},
respectively. The four processors that operate on filel are “connected” as a one-dimensional linear grid. The four
processors that operate on file2 are connected as a two-dimensional grid, which is linear in the X-direction, but
periodic in Y.

The preceding discussion applies to inter-processor boundaries and not the actual physical image boundaries.
However, different boundary treatment methodologies can be incorporated into our parallel implementation paradigm.
If a boundary treatment calls for mapping existing data into the boundary in some fashion (such as with periodic or
reflecting boundaries), the corresponding mapped box and actual physical processor can be computed and handled
in the intersection phase of the process. In the case where boundary treatment calls for numerical extension into the
boundary (such as with extrapolation from the physical boundary), the actual extension can be handled separately
from the above process. Finally, in the case where no boundary exchanges are incorporated, the above process could
be modified to associate a specific stencil/neighborhood operation with an associated partition of the original image
encompassing the boundary (i.e. a specific box). We have implemented the following boundary conditions in our
wavelet classes:

e Periodic,

e Whole point symmetry

Half point symmetry

Constant extrapolation from the boundary

Extent with zero

The implementation of the boundary conditions is re-usable in the sense that once a stencil is given, the regions
of boundary communication/computation can be constructed in a fashion similar to the interprocess communication
regions above.

5. DENOISING IMAGE DATA USING WAVELETS

Denoising data by thresholding of the wavelet coefficients has been simultaneously proposed by several researchers
during the past two decades. The method consists of applying a discrete wavelet transform to the original data,
thresholding the detail wavelet coeflicients, then inverse transforming the thresholded coeflicients to obtain the
denoised data.24?5 There are several ways of calculating and applying thresholds.

The simplest threshold is the Universal,?® o+/2logn, where n is the sample size, and o2 is the noise variance.
Threshold selection alternatives, based on minimizing certain optimization criteria, include the minimaz,?® and the
SURE?” methods. Thresholds can also be based on hypothesis testing, cross-validation, and Bayesian estimation
approaches.? The most flexible of the threshold calculation methods, the Top method, involves selecting the
threshold as a quantile of the empirical distribution of the wavelet coefficients. By experimenting with different
quantile values, the user can interactively explore the best threshold for a given application.

The parallel implementation of the universal threshold is trivial, if the noise variance is known. Otherwise, it
involves calculating certain measures of variability, like the standard deviation, L, norm, or median absolute deviation
(MAD),?® in parallel. Calculating top thresholds in parallel requires a parallel sorting algorithm. Implementing some
of the other threshold selection procedures, e.g. the minimax, in parallel requires optimizing certain risk functions
in parallel.

Threshold, or shrinkage, application functions include the hard, the soft, and the semisoft functions.?’ The hard
function involves a keep or kill strategy: coeflicients whose absolute values are below a positive threshold are all
“killed” (set to zero), while the others are kept unchanged. The soft function is similar to the hard, except that
it either shrinks or kills: the coefficients that are kept are modified by shrinking them towards zero. The semisoft
function generalizes the hard and the soft functions by using two thresholds, and includes both the hard and the soft
as special cases.>* Applying the thresholds in parallel is trivial in most cases, as once the threshold is selected, it is
applied one-coefficient at a time. We note however, that certain Bayesian denoising schemes?* do not involve separate

1150
pixels

1550 pixels

Image Map 64 - 128 pixels

Figure 6. An example of a FIRST image map with two bent-double galaxies

threshold calculation and threshold application steps; rather, they shrink each wavelet coefficient by multiplying it
by a function depending on the Bayesian parameters and on the coefficient itself.

The combination of soft shrinkage with the universal threshold is referred to as VisuShrink2® soft with the
minimax threshold is called RiskShrink,2® and soft along with the SURE threshold is known as SureShrink.2” More
recent advances, BayesShrink,31:32 advocating soft shrinkage in a certain Bayesian framework, claim to outperform
SureShrink estimates in the context of denoising images.

6. EXPERIMENTAL RESULTS

In this section, we describe some preliminary results of our work in progress in the area of denoising image data in
parallel. The images we consider arise from the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey.3?
Radio sources exhibit a wide range of morphological types. Of particular interest are sources with a bent-double
morphology, as they indicate the presence of large clusters of galaxies. Currently, FIRST scientists identify bent-
doubles by manually looking through the images. The image dataset is “only” about 200 Gigabytes, moderate by
today’s emerging standards, but large enough to inhibit an exhaustive visual inspection by the astronomers. Our
goal is to automate the detection of bent-doubles by using data mining techniques.?*

The FIRST survey is producing the radio equivalent of the Palomar Observatory Sky Survey. Using the Very
Large Array (VLA) at the National Radio Astronomy Observatory (NRAQ), FIRST is scheduled to cover more than
10,000 square degrees of the northern and southern galactic caps, to a flux density limit of 1.0 mJy (milli-Jansky).
At present, with the data from the 1993 through 1998 observations, FIRST has covered about 6,000 square degrees,
producing more than 20,000 image maps. Each image map is 1550 by 1150 pixels, large enough to benefit from
parallel processing. Due to the sensors used to collect the data, there is a pronounced noise pattern that appears as
“streaks” in the image. Figure 6 shows an image map that contains two bent-double galaxies.

The task of denoising these images is made challenging by the fact that some of the information necessary to
identify a galaxy as a bent-double, could lie on a “streak” and be removed as “noise”. To ensure that wavelet denoising
can indeed be applied to our images without any significant loss of useful information, we first experimented with
the serial version of our code on a small image extracted from the larger image map.

Figure 7 presents an example FIRST image, and various wavelet denoised versions of it. All the examples were
obtained using the Haar wavelet, and three multiresolution levels in the wavelet decomposition. We are currently
experimenting with other wavelets and denoising options to find an optimal combination for the FIRST dataset. A

good technique should remove the background noise effectively, but keep the important bent-double features intact.
For example, in the bent-double of Figure 7, the two wavy lobes of the bent-double are connected by a fainter bridge.
This bridge is important as it can be used to calculate the “angle” of the galaxy to determine if it is a bent-double
or not. As the bridge lies on one of the noise streaks, we have to be careful in the use of denoising. This task is
made more challenging by the fact that the number of radio galaxies precludes individual examination of the effects
of denoising on each image.

7. SUMMARY AND CONCLUSIONS

In this paper, we have described our work on the design and implementation of an object-oriented parallel toolkit
for image processing. Using examples, we have illustrated how the object-oriented paradigm can help us to abstract
out the commonalities across several different operations. This enables re-use of software, not only in the imple-
mentation of the image processing operations, but also the communication tasks that must be supported for parallel
implementation. We showed how ideas developed in the fields of partial differential equations and linear algebra
can be exploited to make our software portable across data distributions and processor configurations. We present
some preliminary results that show that wavelet denoising techniques can be used effectively on smaller images, and,
through the use of our parallel software, on larger images as well.

ACKNOWLEDGMENTS

UCRL-JC-138953: This work was performed under the auspices of the U.S. Department of Energy by University of
California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

REFERENCES

1. “Sapphire: Large-scale Data Mining and Pattern Recognition.” http://www.lnl.gov/casc/sapphire.
2. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Advances in Knowledge Discovery and
Data Mining, MIT Press, Cambridge, Mass., 1996.
3. U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “The KDD Process for Extracting Useful Knowledge from
Volumes of Data,” Communications of the ACM Special Issue on Data Mining 39, pp. 27-34, 1996.
4. N. Ramakrishnan and A. Y. Grama, “Data Mining: From Serendipity to Science,” IEEE Computer Special Issue
on Data Mining 32(8), pp. 34-37, 1999.
5. Jahne, B., Practical Handbook on Image Processing for Scientific Applications, CRC Press, Boca Raton, Florida,
1997.
6. A. K. Jain, Fundamentals of Digital Image Processing, Prentice Hall, Englewood Cliffs, New Jersey, 1989.
7. J.-L. Starck, F. Murtagh, and A. Bijaoui, I'mage Processing and Data Analysis: The Multiscale Approach,
Cambridge University Press, Cambridge, United Kingdom, 1998.
8. E. Arge, A. Bruaset, and H. P. Lantangen, “Object oriented numerics,” in Numerical Methods and Software
Tools in Industrial Mathematics, Daehlen, M. and Tveito, A., ed., pp. 7-26, Birkhduser, 1997.
9. “Flexible Image Transport System (FITS).” http://www.cv.nrao.edu/fits/FITS.html.
10. I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.
11. D. E. Culler and J. P. Singh, Parallel Computer Architectures A Hardware/Software Approach, Morgan Kauf-
mann, 1999.
12. University of Tennessee, MPI: The Message Passing Interface Standard, 1.1 ed., 1995.
13. “OpenMP Application Program Interface.” http://www.openmp.org.
14. J. D. McCalpin, “A survey of memory bandwidth and machine balance in current high performance computers,”
tech. rep., Silicon Graphics Computer Systems, 1997.
15. K. Dowd and C. Severance, High Performance Computing, Second Edition, O’Reilly and Associates, 1998.
16. 1. Foster, Designing and Building Parallel Programs, Addison-Wesley, 1995.
17. S. F. Ashby, R. D. Falgout, T. W. Fogwell, and A. F. B. Tompson, “Numerical simulation of groundwater flow
on mpps,” in Proceedings of the Fifth SIAM Conference on Applied Linear Algebra, 1993.
18. V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction To Parallel Computing: Design And Analysis
Of Algorithms, Benjamin-Cummings / Addison-Wesley, 1994.

Figure 7. Examples of original and denoised FIRST image maps. (a) Original. (b) Top 0.1st and 0.9th quantile
thresholds; semisoft. (c) Universal, o as the Lz norm of the level; detail coefficients; hard. (d) As (c); soft. (e)
Universal, o as the L, norm of all the detail coeflicients; hard. (f) As (e); soft. (g) Universal, ¢ as the MAD of the
level; detail coefficients; hard. (h) As (g); soft.

19

20.

21.

22.

23.

24.
25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

. G. C. Fox, R. D. Williams, and P. C. Messina, Parallel Computing Works!, Morgan Kaufmann Publishers, San
Francisco, 1994.

W. Y. Crutchfield and M. L. Welcome, “Object oriented implementation of adaptive mesh refinement algo-
rithms,” Scientific Programming 2, pp. 145-156, 1993.

R. D. Falgout and J. E. Jones, “Multigrid on massively parallel architectures,” Tech. Rep. UCRL-JC-133948,
Lawrence Livermore National Laboratory, 1999.

“Samrai : Structured adaptive mesh refinement applications infrastructure.”
http://www.llnl.gov/casc/SAMRAI/.

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving Problems on Concurrent Processors,
Prentice Hall, 1988.

R. T. Ogden, Essential Wavelets for Statistical Applications and Data Analysis, Birkhduser Boston, 1997.

B. Vidakovic, Statistical Modeling by Wavelets, Wiley Series in Probability and Statistics, John Wiley & Sons,
Inc., 1999.

D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation via wavelet shrinkage,” Biometrika 81, pp. 425-455,
1994.

D. L. Donoho and 1. M. Johnstone, “Adapting to unkown smoothness via wavelet shrinkage,” Journal of the
American Statistical Association 90, pp. 1200-1224, December 1995.

W. N. Venables and B. D. Ripley, Modern Applied Statistics with S-Plus, Springer, 1996.

A. Bruce and H. Gao, “Understanding waveshrink: Variance and bias estimation,” Tech. Rep. 36, StatSci
Division of MathSoft, Inc., 1995.

H. Gao and A. Bruce, “Waveshrink with semisoft shrinkage,” Tech. Rep. 39, StatSci Division of MathSoft, Inc.,
1995.

G. Chang, B. Yu, and M. Vetterli, “Spatially adaptive wavelet thresholding based on contect modeling for image
denoising,” IEEE Trans. Image Processing , 1998. Accepted for publication.

G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEFE
Trans. Image Processing , 1998. Accepted for publication.

R. H. Becker, R. L. White, and D. J. Helfand, “The FIRST Survey: Faint Images of the Radio Sky at Twenty-
cm,” Astrophysical Journal 450, p. 559, 1995.

I. K. Fodor, E. Canti-Paz, C. Kamath, and N. A. Tang, “Finding bent-double radio galaxies: A case study in
data mining,” in Computing Science and Statistics, vol. 33, 2000.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

